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Abstract. 

Analysis of  the   multi-frame  blind  deconvolution  errors  in dependence  on  the image 

digitization  is given in the article. The general formula for  this dependence  is received. The 

detailed results are obtained   for images received  from  a telescope  when  the input images are 

formed  by  the  low  digitization  in  optical system of the  telescope . As a result   at   the low bits-

depth   in the  input images the  errors  of   blind deconvolution   arise   . Comparison between  two 

optical  systems  having  a  different  quantity  of  bits per  channel   is made with the obtained 

formula .  Also the errors in restoration of the real satellites images from  telescope are estimated by 

another  more straight method: results  of  restoration   with  the  12 bits per channel  images  are 

compared  with the results received  after  the  input images compression  to  8 bits  per cannel. The 

errors  estimates received by the  real restored  images are compared  with  the results  of  theoretical 

formula. This comparison shows  a  satisfactory  agreement of  theoretical results  with the estimates  

by real data. Also the analysis  of  errors  shows, that the more frames  are processed in the 

algorithm, the  less the input digitization  influence on the  restoration .  

1.Introduction. 

           In article [1] the  algorithm of  image restoration  by  method of  blind deconvolution  has 

been offered. This algorithm  continues  and develops   the algorithm published in [2]. The 

algorithm [2]  has been extended in [1]  to a case of the  multi –frame blind  deconvolution. This 

multi-frame approach  gives  good  results of  restoration even in conditions of the strong signal  

distortions  at the  telescope aperture[3]. The algorithm  was checked  at number  of different  



images received by a telescope. It was found out, that a different  detailing   of image  digitization   

turns out  the different quality of  image  restoration  . In this article we estimate errors of  

restoration   in dependence on  digitization  of  the   input  images  from  a telescope. Questions  of   

necessary quantity of  bits per channel  in the  image recording  arise repeatedly in  literature. For 

example, in [4] the  problem  is given from  the  system Photoshop  point of view : “ Some years 

ago poor implementation of scanning and digital camera technology caused lots of problems. This 

problem influenced some experts to recommend working in 16-bits.  In the last few years 

Photoshop image-processing has been refined. Now  the  high-bit workflows are seldom necessary 

for editing images in Photoshop.” In  [5] we can find  opinion of  the scientific  image  processing :  

“Multispectral systems are very computationally intensive because of the greater amount of 

information to process. Greater bit depth (12-bits or more per channel) is necessary to achieve an 

appropriate image. Multispectral imaging systems process a greater amount of data than an RGB 

system. Images produced by multispectral systems are generally not directly viewable, rather, they 

serve as master images from which derivatives are produced. “    The firm “VayTek Inc.”  

specializes in the image deconvolution software and 3D programs. On  site [6] this firm gives the  

following recommendations for  choice of  cameras:   ”The noisier the image, the less accurate the 

deconvolution. It is  difficult to compare cameras on this issue. All chips have a bit depth rating 

from the manufacturer. For example the Sony interline and the Kodak KAF chips are both 12 bit 

chips. However, the effective bit depth of an image from these two chips is quite different. The 

Sony chip has a well depth of about 18,000 electrons. Given that it has a readout noise of about 9 

electrons per well, the effective signal-to-noise ratio is about 18,000/9 or 2,000. This means the 

camera can produce an image with about 2000 shades of gray - or an image with a true bit depth of 

about 11 bits - not the rated 12 bits. On the other hand, the Kodak chip has a well depth of 40,000 

electrons and a read noise of about 10 electrons. This gives it a true bit depth of 40,000/10 = 4000 

or 12 bits. Visually, the images from these two chips are very similar. However, if you perform an 



exacting deconvolution process on images from these two cameras, you will see  differences in the 

results“ . The necessity of using  the  higher  bit- depths values  is explained on site [7] : “Regular 8 

and 16 bit per channel applications are simply not capable of realistically or accurately processing 

real world levels of illumination. HDR floating point images can represent a vastly wide range of 

values, for example a bright object in a scene might have a brightness of 0.9, and the sun 

10,000,000. As a result, you could darken an image, and  objects in the scene will become 

darkened, but the sun is still thousands of times brighter than the rest of the scene”.    

All the mentioned  articles  concern  basically  processing the images received in the Earth  

conditions  or  close to a surface of the Earth. However, the problems, connected with observation 

through the space , are significantly more complex because of  the great signal distortions. The first 

digital  recording  and numerical reconstruction  of optical images in computers  date  back to  1968-

1972 ( [8] ), and relatively recently computers  and  optical  sensors  reached  the level  high enough  

to  make this application practical ([9-11]). 

   We show in this article, that  solution of  the deconvolution  task  strongly demands  for  a  high 

quality  quantization  of images  in  the  output of  a  telescope. An idea to convert  images  to  8 bits 

per channel   has a single  ground , that a human eye does not require the greater detailing  of  

images. Data from a  telescope go through  the computational  processing.  This processing is digital  

and  is not connected  with a  visual  observation . In this  article  the  errors of  the   multi-frame  

blind deconvolution  are estimated  in dependence  on digitization   of the input  images. The general 

formula for  this dependence  is received. Also  the errors  of  the  real  images restoration  are 

calculated  and compared with  a theoretical  formula.  At Figs.1-2 the real  input images are shown.  

These are the American satellite Lacrosse-3  (Fig.1) and  the Russian satellite  Meteor-1(Fig.2).  



                            

                               Fig.1 Real image of satellite   “Lacrosse-3”. 

 

                             

                                    Fig.2 Real image of satellite “Meteor-1”. 

 



These images  were observed  by a telescope in a solar incoherent light.  In Figs.3-5 the restored  

images of  Lacrosse-3 and Meteor-1  are shown. They are obtained by the 12 bits/pixel  camera. The 

restored image of   Lacrosse-3 with using  19 frames from telescope  is shown at Fig.3.  

                            

             Fig.3  Restoration of  satellite “Lacrosse-3”, 61-st  iteration,12 bit  depth. 

At Fig.4 the same restored image can be seen, but some specific elements of the satellite are marked  

by  a name of the element.  



                            

     Fig.4 “Restoration of  satellite “Lacrosse-3”, 61-st  iteration,12 bit  depth, comments of  details. 

 

At Fig.5 the restored image of the satellite Meteor-1with using 25 frames from a telescope  is 

shown.  

                            

           Fig.5 Restoration of  satellite  “Meteor-1”, 13-th  iteration,12 bit  depth. 



Fig.6 shows  a picture of Meteor-1  taken from the Internet. 

                                                 

                                    Fig.6 “Meteor-1” from the Internet. 

 

2. Description of the blind deconvolution algorithm . 

Before the task statement    we will remind  algorithm of  deconvolution [1], as influence  of image  

digitization on  deconvolution  results depends on the  algorithm operations.   We have M  

distorted images )1()( MmrOm <=<=
r

 which represent   the functions  of convolution: 
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in two-dimensional  space of the input image. The iterative algorithm of  image restoration was 

offered in [1]. The short description of it is given below. 
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A  proof of formula (2.3) received by method of the maximum likelihood  is given in [1]. 

The operations (2.3 - 2.4)  form  the step 6. The inverse  Fourier  transform of (2.3) gives  estimate   
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 represents  initial approximation for 

the  following  iterative cycle. The number of iterations increases for unit , 1+= kk  , and the all 

process starts over again.  

3.The task statement. 



It is necessary to work with numbers of   “double” format  for  image restoration  by  method  of  

blind deconvolution. These numbers are obtained  by transformation  from “integer” format  to the 

“double”. If the input images   )(rOm

r
),...,1( Mm =   have a low level of bits/pixel , it  means 

a  low quality of  the  information recording. The  image recording  with a camera of  8 bits/pixel  is 

the  most popular, the  cameras of 12 bits/pixel  are less often , the 16 bits cameras  are seldom  and  

cameras of more than 16 bits/pixel practically are unknown. It means, that images values lie  in the  

range 0-255 in the first case , in the  range 0-4095 in the second case, in the range 0-65535 in the 

third case, and practically we  never deal with the full integers. 

There is no  standard  camera that  would  have   enough  quantity  of  bits/pixel and provide a 

necessary quality  of data recording. Therefore it is only possible to compare results with camera, 

recording  sK   bits/pixel (we will consider this quality as an ideal), with results  from  camera, 

recording  dK   bits/pixel, where  sd KK <= . Any number that is written  in  space of sK  bits 

has a range from  0 up to 12 −sK
. The quantity of  numbers laying in a range of sK  bits  exceeds  

the quantity of  numbers that  are written in dK  bits  to 
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represents a shortage   of the  pixel value  when  the “ideal" pixel value  is equal to si  . In the shown 

example the  "ideal"  number of bits was 12=sK  , but calculation can be made for any sK . 

Losses of the information will increase. 
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In the all  formulas  the sign <A> means averaging of the random variable  over  the all  possible 

values. 

 

Assuming that shortage  in the input  frame represents a stationary random process, 

formulas (3.3) and (3.4) can be written  so:
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are identical (this  is  true  for majority of cases ), we have:
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Practically this condition is not always  kept, as the different frames can statistically  differ from 

each other, for example, shortages can be various  because  of  movement in the orbit. This case is 

not considered  in this article  . If statistical characteristics of  shortages  are identical in the  

different frames(formula (A1.21)), the correlation functions    are  identical in the all frames . In this  

case index m can be omitted in 
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  (formula 3.7).  In (3.7) and everywhere  below rV   designates  the space of 
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Now it  is necessary to calculate  integral  in the right part of (3.7) . It is difficult  to do it precisely , 

but it is possible to estimate a level of errors in a vicinity of true images. We will suppose, that the 

all  impulse responses are calculated approximately correctly at the end of  iterative  process, i.e. the 
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 at the   end 

of iterative process and we can  write formula (3.7) in a  view:  
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Here )(ω
r

mU   is  function of  the amplitude  distortions in  the spectrum coordinates ω
r

, A   is  

the space of coordinates ω
r

 at  the optical aperture . 

 The value 
mI  is calculated  in Appendix2 (formula (A2.5)), and represents a square of the signal 

amplitude distortions  averaged over  the  area of the aperture  . The   atmosphere never strengthens 

a signal which  passes  through it  but only weakens its amplitude  and  leads to attenuation of the  

signal. Therefore it is possible to suppose, that value 1<=mI  ,  i.e.  is  practically always  less 

than unit.   

Obviously , (3.8) describes  the  image errors correlations   only when the iterative process  is 

already stabilized, and the estimates of image and  impulse responses weakly  change  with 

increasing of iteration number. It is follows  from (3.8) , that the stronger amplitude distortions are,( 

i.e. the  less  values of coefficients 
mI  are) , the  larger  integral of the image errors  is. Also  the 

more  number  of  frames M is used, the less  influence of the input frames shortages  on  the 

restoration . 

4. Approximation of errors in the restored image. 



      Now we have to receive the correlation function  )(rRdO
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for (3.8) . We will  suppose that  any  

values  sK
si 20 <<=  can appear   in  any pixel of the input image. In this assumption it is 

possible to receive a shortage variance  
2)( ∆σ  as an  average square  deviation  of )( si∆ (3.2)  

by  formula:
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)( siP  is a probability of  the pixel value equal to si . We will  enter  a designation:  
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(4.6)  means, that  if we use  the image with dK bit/pixel instead of image with sK   bits/pixel    the 

all  pixels with values  0Iis <  become equal to zero.  It does not mean removal of additive noise in 

the image: after the pixel  nullifying   the details  with a   small intensity will be lost  without 

possibility  of  restoration.  



Now we  will suppose that the all possible values of background  intensity are distributed with equal 

probability  in the  interval from 0 up to FS . Also we will assume, that the all possible values of  

the object  intensity  are distributed with equal probability  in  interval from 0 up to IS  .Using (4.4-

4.6), it is possible to rewrite (4.1): 
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The maximal possible  value of pixel satisfies to condition: 
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Calculation (4.7) gives the different results  for  the different maximum levels of  background: for 

the  big  levels of  background ( IF SS >= )  and for  the small levels of a background:  

IF SS <<  . If  the telescope observes  in the  normal weather  conditions ,  the second variant 

is  more  real. We will  consider  only the second  case. Probabilities )( siP  of the  pixel value si    

are calculated  in Appendix3. Calculations by  formula (4.7)  lead  to a rather large  formula. Taking 

in account  values of  the largest order  in (4.7) we can receive formula for 
∆

σ  : 
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The restriction IF SS <<  means, that the maximal value of the object  image  much more 

exceeds the maximal value of  background in the frame. From expression (4.10) it is visible, that if 

ds KK =  variance  (4.10) is equal to zero, and in the all other cases  ,when sd KK <  ,  the  

variance will be rather big. If ;8;12 == ds KK   we have 1672≈∆σ .  Value  ∆σ is really 

visible   only in the compressed  frame with  8=dK  and , accordingly  to  formula (3.1) in 

compressed image ∆σ  will be  equal to: 
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∆
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From (4.11) it is visible, that transformation of the two-bytes array  to the  one-byte array  leads  to 

the  noise  equal  to 41 %  from  the maximal value in the frame with 8 bits/pixel. In this case  the 

level of  background in the initial input frame of 12bits/pixel before compression  can be very low . 

All this  leads to deterioration of the restored images. On a simple example it is possible to be 

convinced, how the  compression  to  one-byte file from the  two-byte file  worsens  the resolution  

of  optical system. Assume that the two-bytes  frame  contains the peak with  a value equal to  511 , 

and  it  is  surrounded  by  8  points of  values  equal  to 256. After compression to the  one-byte file 

the all nine points will become the  identical values  equal to  1. In the two-byte file the center stands 

out obviously , so the  resolution is equal to one pixel . After compression to the one-byte file and 

receiving  a spot constituted of  9 identical points  equal  to 1 ,the  resolution is  worsened three 

times on both coordinates.  

Using formula (4.11), it is possible to calculate an average deviation of the image restoration  

because  of  compression  to one-byte data  array. For simplifying  we will use  formula (3.8) in 

assumption of absence of the amplitude distortions. Assuming, that  all errors  in the right and  in the 

left parts  of  (3.8) are  uncorrelated , we receive formula for the errors  variance  in  pixel  of  the   

restored  image: 
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If 19;104 == MdOσ , we  receive: 9.33≈dEσ .It amounts to  approximately 13 

percents of the maximum level in the one-byte image. If 25;104 == MdOσ , we receive : 

5.29≈dEσ . It amounts to  approximately 11 percents of the  maximum level in the one-byte 

image.

  
5.  Calculation errors in the real restored images. 

For comparison we can estimate the real errors  after replacement of  the real  images  with 12 

bits/pixel  with  images with  8 bits/pixel. For this purpose   there  was  made  restoration  (Fig.3) of 

the  satellite Lacrosse-3  by  19 frames that  were  received with camera of 12 bits/pixel  (Fig.1) . 

Then these  initial images were compressed  to  the 8bits/pixel , and restoration also  was  made  

(Fig.7).  

                              

              Fig.7 Restoration of  satellite  “Lacrosse-3”, 60-th  iteration,8 bit  depth.. 



Deterioration of restoration  by the  one-byte images in comparison with restoration by the 12 bits  

images  was estimated in such way:  the  image array 1Ar  restored by the  12 bits images  was  

considered as an  ideal, and the image array  2Ar  restored  by the one-byte  images  was  

considered as the result with  errors. ][],[ 21 iAriAr  ),...0( yx NNi ⋅= -are  the  values of the 

restored  pixels with  number i  in the space of frame, and yx NN , - are the sizes of frame along  

yx, - accordingly. The  square deviation of one array from another was calculated  and then  it was 

normalized to quantity of pixels in the frame :  
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The value realσ  is considered  as  error of restoration by the one-byte arrays  in comparison with 

the 12-bits  arrays,  analogous to the error (4.12) dЕσ  . The  calculations were  made by formula 

(5.1)  with using  images at Fig.3 and Fig.7. Dimensions 256== yx NN ,  number  of  

processed  frames 19=M , number of  iteration 61=k , 3.31=realσ . This result 

coincides good enough  with the error 9.33≈dEσ calculated  by  formula (4.12). Also there was 

made restoration (Fig.5) of the satellite Meteor-1-1 with 25 frames received by 12 bits 

camera(Fig.2). After this the input frames have been compressed to the one-byte frames, and 

restoration was made  with them (Fig.8). 

 



                             

                Fig.8 Restoration of  satellite  “Meteor-1”, 14-th  iteration,8 bit  depth.. 

The  calculations were made by formula (5.1) with using  images at Fig.5 and Fig.8. Dimensions  

256== yx NN , number of  frames  25=M , number of iteration 13=k ,  the  error 

6.22=realσ  . In this case the coincidence with error 5.29≈dEσ (4.12)  turned out some 

worse .   

Conclusion. 

We investigated dependence  of  the   blind  deconvolution   results  on digitization  of   the  

convolution  recording . The general formulas (A1.19) - (A1.21)  for  the 

 restoration  errors  are obtained  . These formulas connect  the correlation  function  of 

deconvolution  errors with the  correlation  function of  the loosed bits in the  input frames.  The  

errors of restoration are estimated  by formula (A1.21) in a supposition  that  the  record of  images  

with  sK   bits/pixel  gives the  ideal quality of digitization, and the record  with dK  bits/pixel 



( sd KK <= ) leads to errors in  the image restoration. Calculations were  made for a case 12=sK  

and 8=dK .  

Also the errors were  calculated   for the real data from a telescope . Only frames of   12bits- depth 

have been  at the disposal  for calculations. Restoration  with images  of 12 bits/pixel was  

considered as the test specimen  and  the  work  with 8 bits/pixel was  considered  as restoration with 

errors .  This calculation was  made on the frames  received from satellites " Lacrosse-3 " and 

“Meteor-1”. Calculation shows a satisfactory  agreement of  theoretical results  ( formula (A1.21)) 

with the  estimates  by real data. This  agreement is better, the better is  restoration of the test 

specimen. For “Lacrosse-3”  12 bits /pixel   appeared  to be enough, and agreement of theoretical 

results  with the real ones is good. For “Meteor-1”  the agreement  appeared to be worse. It is 

necessary to note, that the more quantity of frames  is processed , the  less the  final errors of 

restoration  are. It speaks  once   more   for the  multi-frame  blind  deconvolution. 

So  the deep digitization of input data  for blind deconvolution is necessary.  The useful information 

in the single byte  images can  be completely nullified  or absorbed by a  noise in the pixels having a 

low level of intensity.  On  recording  more than one  byte  this information is not nullified ,it  can be 

successfully  processed  by the  multi-frame deconvolution  algorithm. If we process  the  sufficient   

number of  frames we can  restore more  details which  have  a low intensity . 

Appendix1. Calculation  the   errors correlation function in the restored image. 

Formula (2.3) calculates  the image  spectrum )()( ω
rk

G at  iteration with  number k . 

Differential  )()( ωvk
dG of function (2.3) has a view: 
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dCddG  are the  designations for  differentials   of  the image  



spectrum )()( ω
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G  ,  coefficient  )()( ωµ
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 (2.4)  and   the input  image spectrum  
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m
C   with  numberm   accordingly.  These differentials can be considered  as errors  in the 

vicinity of true values )()( ω
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G
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C . The  spectral density [12-13] 
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of restored spectrum errors   can be written trough these  differentials :
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The  all  errors in  the frames  with different  numbers m  can be considered as the uncorrelated  

random values . Then it is possible to rewrite (A1.2) in a following view: 
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where 
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is the spectral density [12-13] of  the coefficients  (2.4)  errors, 
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 is the spectral density [12-13] of the input spectrum  errors, 
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 (A1.6) 

is  the spectral density of  two errors correlation : the input spectrum error and  the error of  

coefficient (2.4) , both  of  number m  . 

 



Taking in account (2.2) and (2.4) and keeping in (A1.3) only values of the largest order, we can 

receive instead of (A1.3) the next expression: 
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For further calculations we will enter designations: 
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and  designation for  the inverse  Fourier transform: 
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Using the inverse  Fourier transform for (A1.8) - (A1.10), we can  receive: 
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In formulas (A1.11) - (A1.14)  rV  is the space of coordinates  r
r

 , and ω
rV  is the space of  

ω
r

.After substitution (A1.8 - A1.10) to(A1.7) we can receive:
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It is known [12-13] , that   the  errors correlation  function  )()(
rR

k
dE

r
 (3.5) can be received by the  

inverse  Fourier transform from the spectral density )()( ω
rk

dGS  : 
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Function of shortages  correlations )(rR
mdO

r
 (3.6) in  the input frame can be received similarly: 
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Now we will take the inverse  Fourier transform from the both parts  of (A1.15). Using the 

designations (3.5)-(3.6) ,  we  can receive: 
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Expression (A1.18) is valid  at  any point of space  1r
r

 . Integrating (A1.18) over 1r
r

 and  taking in 

account  (A1.14), we receive instead of (A1.18): 



2

1

2)(

1

22)(

2)(

))((

)()(2

)(

∑

∑ ∫

=∫

=

=

M

m

k
m

M

m V
dO

k
m

V

k
dE

I

rdrRI

rdrR r
m

r

rr

rr

         

 (A1.19) 

In (A1.19)  a designation for integral from  the  impulse response  estimate  is entered:  

rdrhI
rV

k
m

k
m

rr 2))(()( )(∫
+=                                                 (A1.20) 

If  statistical characteristics are identical in the all input frames, (A1.19) becomes more simple . In 

this case  the  function   )(rR
mdO

r
 is identical in the all frames  and  index  m  can be omitted. 

Then we receive: 
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Appendix2. The  impulse response of the incoherent optical system at presence of the 

amplitude  and phase distortions. 

The  impulse response of  the optical incoherent system )(rh
r

has a view [12-13] : 
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 where  function )(rV
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In (A2.2)  

λ

π2
=k  is the wave number, A   is  the space of coordinates ω

r
 at  the optical 

aperture , )(ωϕ
r

 is  function of  the phase distortions in  coordinatesω
r

.                                                          

Formula (A2.2) is valid if the amplitude  distortions are absent. In   presence of the amplitude  

distortions we  have  instead of  formula (A2.2): 
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Here )(ω
r

U   is  function of  the amplitude  distortions in  coordinatesω
r

.                                                          

Through   expression (A2.3)  the impulse response  is expressed also by formula  

( A2.1). In  amplitude distortions  we   receive   from A2.1: 
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Otherwise,   integral of the  impulse response over the frame  is equal to the  square of the  

amplitude  distortions averaged over  the aperture. 

If the amplitude  distortions are absent, 1)( =ω
r

U and  formula (А2.4)  gives : 
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Appendix3. Probability distribution  of the  pixel values  in the  input image . 

  The  probability distribution  )(iP of the pixel values i in the input image   can      be  written , 

using that the  designations IF SSiPi ,),(, : 
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0 0
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)( δ                 (A3.1)   



Here  yx,  are designations  of  the noise  and  the object image  values  accordingly . 

We   suppose that the all possible values of noise  intensity are distributed with equal probability  in 

the  interval from 0 up to FS . Also we will assume, that the all possible values of  the object  image 

intensity  are distributed with equal probability  in  interval from 0 up to IS . δ  is  an one-

dimensional delta-function. Taking  integral over y   , we will receive instead of (A3.1): 
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Keeping the  values of the largest order   in  (A3.2),  it is possible to receive: 
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i
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